

Literature review of SOTA Transfer Learning and Multi-task Learning applications

Jiaxi Zhao, 20.04, Guided Research Presentation

sebis

Chair of Software Engineering for Business Information Systems (sebis) Faculty of Informatics Technische Universität München wwwmatthes.in.tum.de

lotivation
Goals
Concept
Iodel Structure
asks
 Text
 Protein
 Source code
Conclusion
Outlook

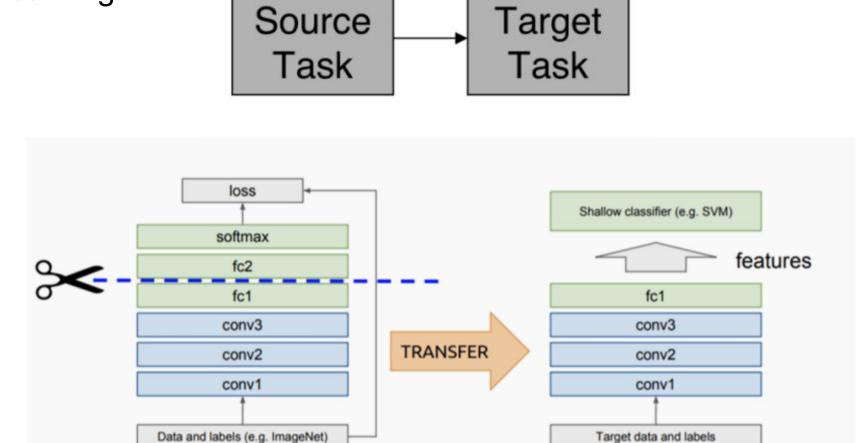
Motivation

٦Π

Motivation	
Goals	
Concept	
Model Structure	
Tasks	
 Text 	
 Protein 	
 Source code 	
Conclusion	

·Analysing TL and MTL application cases.

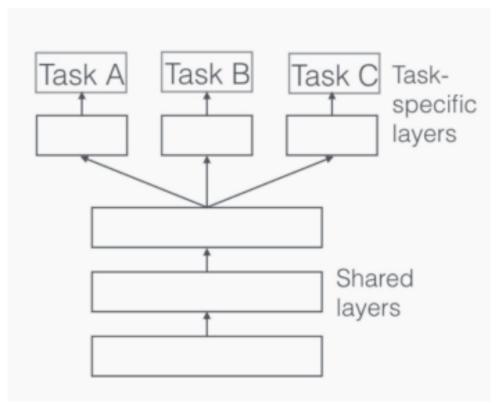
Summarizing TL and MTL suitable conditions.


 $\cdot G$ uidance for researchers to solve data scarcity with TL&MTL by writting a 75 pages research paper.

Motivation Goals Concept Model Structure Tasks • Text • Protein • Source code

Conclusion

Transfer Learning:


Transfer Learning with Pre-trained Deep Learning Models as Feature Extractors

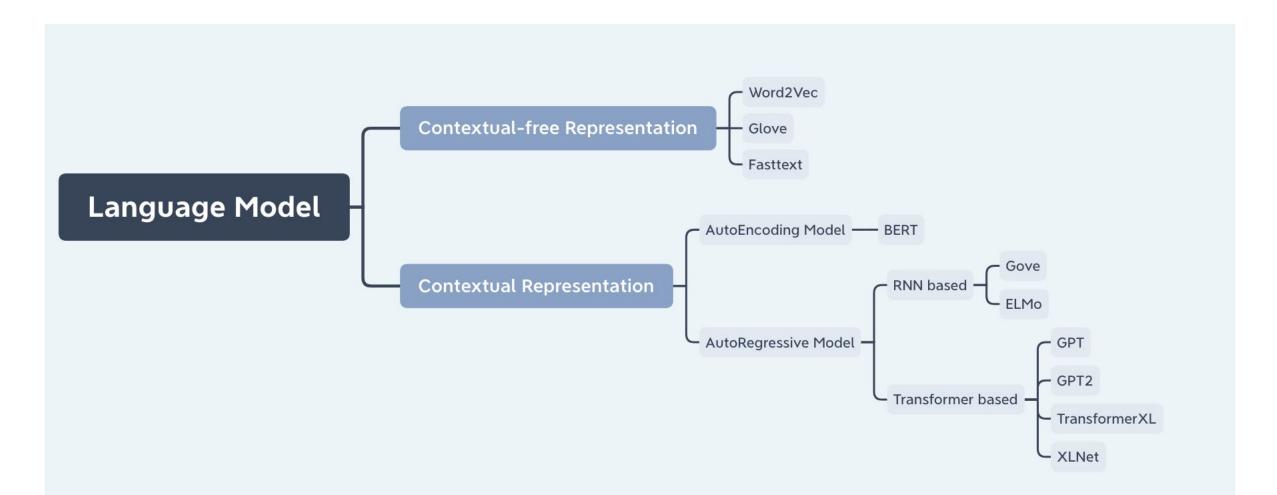
ТШ

Concept

Multi-Task Learning:

Concept

Relation:


Transfer Learning Settings	Related Areas	Source Domain Labels	Target Domain Labels	Tasks
Inductive Transfer Learning	Multi-task Learning	Available	Available	Regression,
				Classification
	Self-taught Learning	Unavailable	Available	Regression,
				Classification
Transductive Transfer Learning	Domain Adaptation, Sample	Available	Unavailable	Regression,
	Selection Bias, Co-variate Shift			Classification
Unsupervised Transfer Learning		Unavailable	Unavailable	Clustering,
				Dimensionality
				Reduction

ТШ

Motivation			
Goals			
Concept			
Model Structure			
Tasks			
 Text 			
 Protein 			
 Source code 			
Conclusion			

Model structure

ПΠ

Model principle

Contexual free models: Co-occurance Matrix

	C1	C2	C3	C4	C5
W1	1	0	0	2	0
W2	0	4	1	0	0
W3	2	0	0	1	0

AutoEncoding models: Masked tokens

RNN based models: Recurrent Neural Network

Transformer based model: $P(x) = \prod_{t=1}^{T} p(x_t | x_{< t})$ or $P(x) = \prod_{t=T}^{1} p(x_t | x_{> t})$.

Comparison Table

	Pros	Cons
Contextual free model	Low computing resource	only allow single context independent representation
AutoRegressive modelRNN	generate context dependent embeddings	Can't encode too long sentences
AutoEncoding model	supports bidirectional context reconstruction	inappropriate assumption: all masked tokens are constructed separately
AutoRegressive modelTransformer	consider sequential relationship between tokens	only encode a uni-directional context

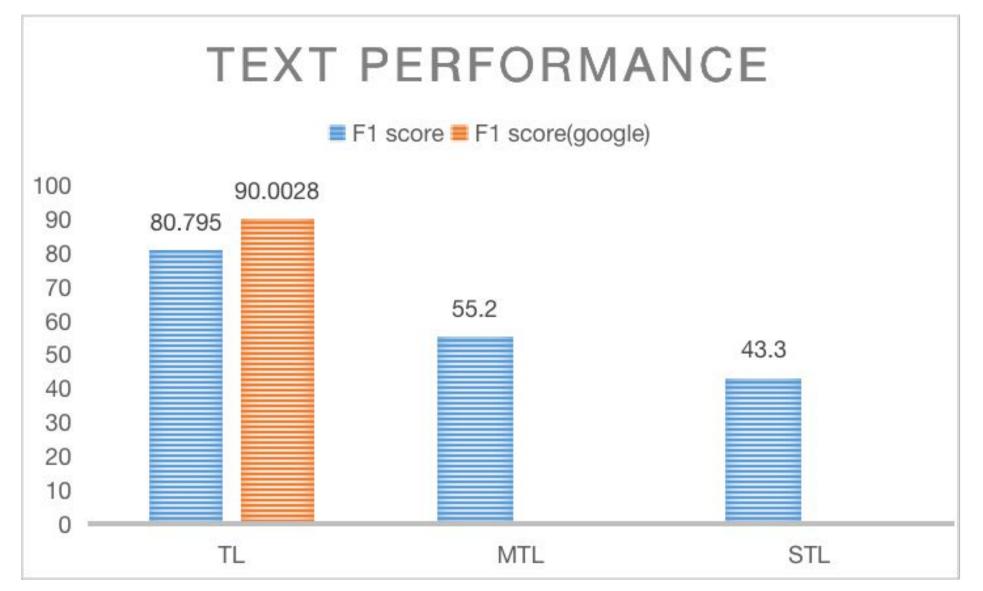
Outime	1411
Motivation	
Goals	
Concept	
Model Structure	
Tasks	
 Text 	

- Protein
- Source code

Conclusion

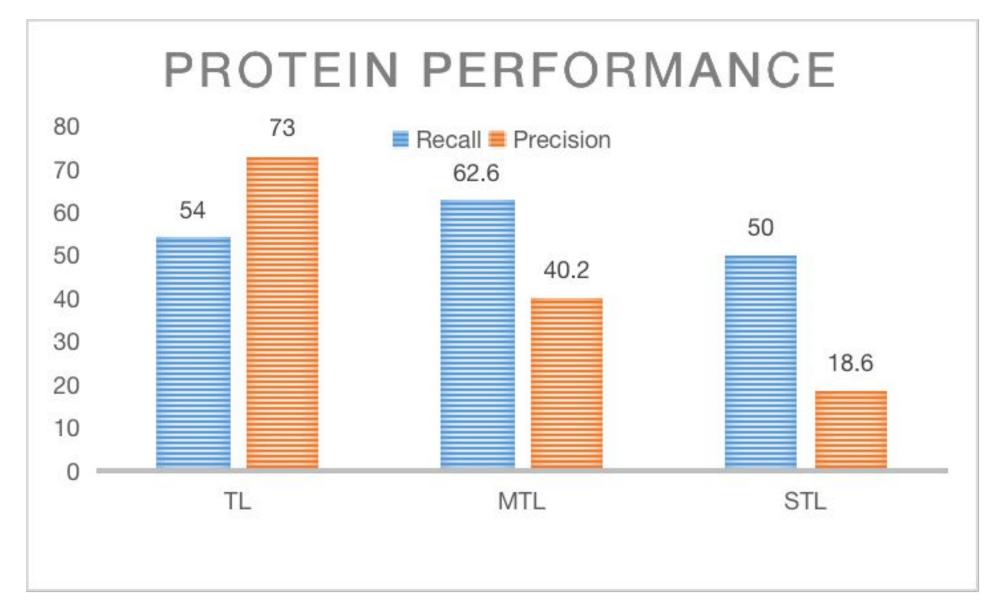
Task	Transfer Learning	MultiTask Learning	Model
Domain Adaption on Reading Comprehension	YES		BERT
Question Answering Sentence Selection	YES		BERT
Thermal dynamic modeling	YES		LSTM
Negation Detection	YES		BERT
Negation Detection		YES	BiLSTM
Natural language understanding		YES	BERT
Language Translation		YES	LSTM

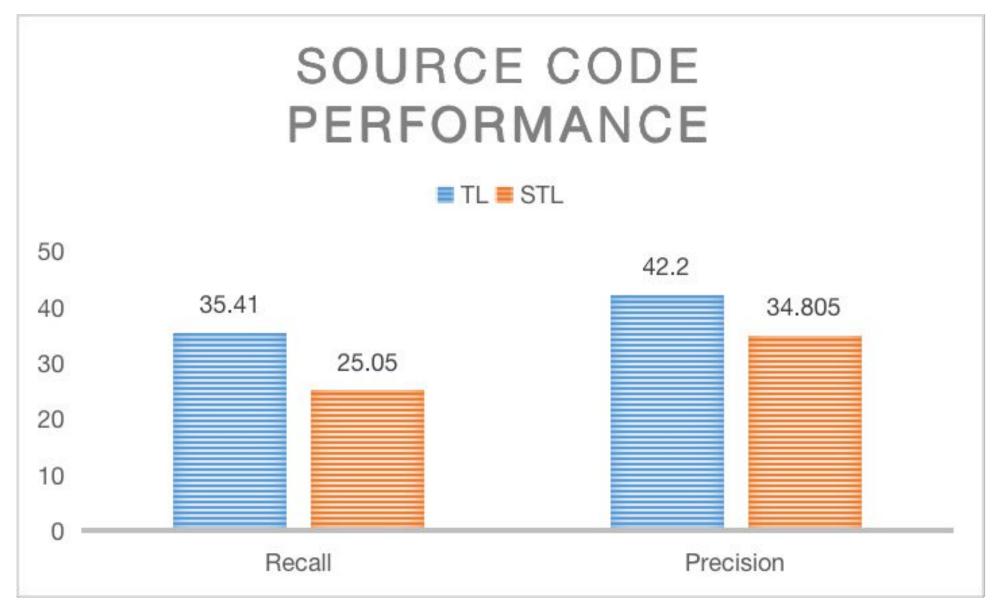
Task	Transfer Learning	MultiTask Learning	Model
Protein structure prediction	YES		ELMo
Protein structure prediction	YES		Bi-direction Transformer
Protein structure prediction Protein Evolutionary Understanding	YES		LSTM
Protein ontology prediction Remote homology and fold prediction	YES		LSTM
Protein function prediction		YES	Multi-label Deep NN


Task	Transfer Learning	MultiTask Learning	Model
Syntax detection	YES		LSTM
Code semantic embedding	YES		LSTM
Code clone detection	YES		RNN
API knowledge summarization Code summarization	YES		RNN
Semantic labeling	YES		CNN

Pros and Cons

	Transfer Learning	MultiTask Learning
Pros	Make use of previous knowledge, no need to train from scratch. Low computing power	Introduce noisy data, increase generalization
Cons	Need massive pre-training data for generalization	Need to find suitable related tasks. Computing power needed


Statistics : Text


Statistics: Protein

Statistics: Source code

Goals

Concept

Model Structure

Tasks

- Text
- Protein
- Source code

Conclusion

ТП

Conclusion

Multi-task Learning Related tasks

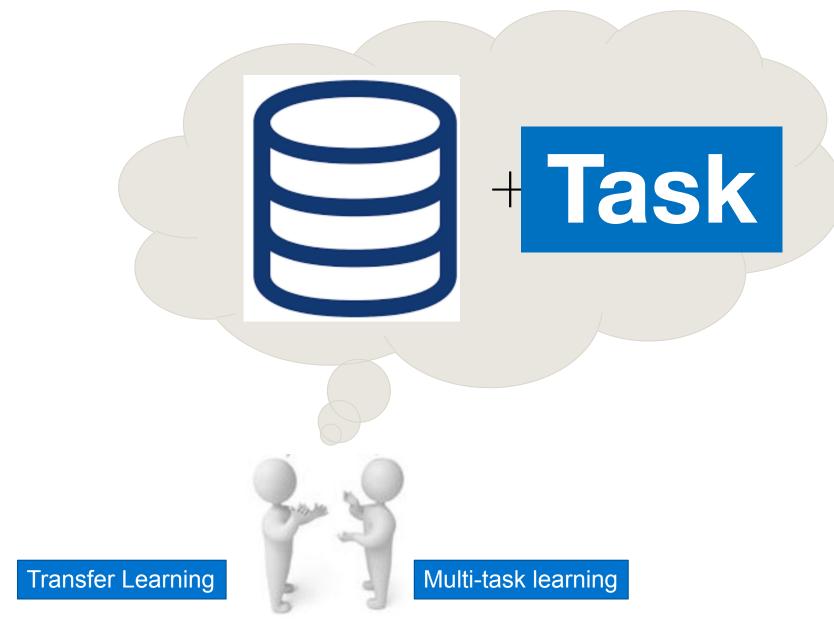
source:https://cn.dreamstime.com/%E5%85%8D%E7%89%88%E7%A8%8E%E5%BA%93%E5%AD%98%E5%9B%BE%E7%89%87-3d%E5%B0%8F%E6%84%9F%E5%8F%B9%E5%8F%B7%E7%9

Goals

Concept

Model Structure

Tasks


- Text
- Protein
- Source code

Conclusion

Thanks for your attention!

Appendix1--TEXT

Task	F1	ΜΑΡ	MAPE	Mean accuracy	Glue	Perplexity
Domain Adaption on Reading Comprehension	87.06					
Question Answering Sentence Selection		93.3				
Thermal dynamic modeling			1.396%			
Negation Detection	94.53					
Negation Detection				86.04		
Natural language understanding					93.1	
Language Translation						8.2

Appendix2--PROTEIN

Task	Q3	PLOT	Precision	Recall	AUC	F1
Protein structure prediction	70.3					
Protein structure prediction		PLOT				
Protein structure prediction Protein Evolutionary Understanding			73			
Protein ontology prediction Remote homology and fold prediction				54	89	
Protein function prediction			38.9	62.6		48

Appendix3--SOURCE CODE

Task	MRR	Accuracy	AUC	Precision	Recall	F-score
Syntax detection	0.52					
Code semantic embedding		88.09				
Code clone detection			82.4			
API knowledge summarization Code summarization				42.2	35.41	37.91
Semantic Labeling	e)		0.769			© sebis 25