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Goals

-Analysing TL and MTL application cases.
-Summarizing TL and MTL suitable conditions.

-Guidance for researchers to solve data scarcity with TL&MTL by writting a 75
pages research paper.
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Concept TUTI

Transfer Learning:

loss
Shallow classifier (.. SVM)
softmax
g>< 2 ~ 7 features
R e e - — —
fc1 fc1
conv3 conv3
conv2 TRANSFER conv2
conv1 conv1
Data and labels (e.g. ImageNet) Target data and labels

Transfer Learning with Pre-trained Deep Learning Models as Feature Extractors
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Concept

Multi-Task Learning:
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Concept

Relation:

Transfer Learning Settings Related Areas Source Domain Labels | Target Domain Labels | Tasks
Inductive Transfer Learning Multi-task Learning Available Available Regression,
Classification
Self-taught Learning Unavailable Available Regression,
Classification
Transductive Transfer Learning | Domain Adaptation, Sample | Available Unavailable Regression,
Selection Bias, Co-variate Shift Classification
Unsupervised Transfer Learning Unavailable Unavailable Clustering,
Dimensionality
Reduction
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Model structure

Word2Vec

Contextual-free Representation Glove

Fasttext

Language Model

Contextual Representation

“— AutoRegressive Model —

— AutoEncoding Model —— BERT

Gove
~— RNN based —[:
ELMo
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Model principle TUT

Contexual free models: Co-occurance Matrix

Cl | C2 |1 C3 | C4 | G5

W1 1 0 0

(B
-

W2 0 ~ 1 0 0

W3

()
)
o
—
-

AutoEncoding models: Masked tokens
RNN based models: Recurrent Neural Network

Transformer based model: p(,) — 1" p(z|zy) O P(x) = [[Ly plailzsr)

picture source https://www.researchgate.net/figure/Example-of-co-occurrence-matrix_fig1_236868847 © sebis 12



Comparison Table TUT

I Cons

only allow single context

Contextual free model Low computing resource : :
independent representation

generate context dependent

AutoRegressive model--RNN embeddings

Can't encode too long sentences

inappropriate assumption: all
masked tokens are constructed
separately

supports bidirectional context

AutoEncoding model )
reconstruction

consider sequential relationship only encode a uni-directional

AutoRegressive model--Transformer R TR context
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Tasks--TEXT

Task

Transfer

Learning

MultiTask
Learning

Domain Adaption on Reading
Comprehension

Question Answering Sentence Selection

Thermal dynamic modeling
Negation Detection

Negation Detection
Natural language understanding

Language Translation
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YES

YES
YES

YES

YES
YES
YES

BERT

BERT
LSTM

BERT

BiLSTM
BERT
LSTM
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Tasks--PROTEIN

Transfer

Learning

MultiTask
Learning

Protein structure prediction

Protein structure prediction

Protein structure prediction
Protein Evolutionary Understanding

Protein ontology prediction
Remote homology and fold prediction

Protein function prediction
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YES

YES

YES

YES

ELMo

Bi-direction
Transformer

LSTM

LSTM

YES Multi-label Deep
NN
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Tasks--Source Code

Syntax detection

Code semantic embedding

Code clone detection

APl knowledge summarization
Code summarization

Semantic labeling
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Transfer MultiTask

Learning Learning

YES

YES

YES

YES

YES

LSTM

LSTM

RNN

RNN

CNN
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Pros and Cons Tum

Transfer Learning MultiTask Learning

Pros Make use of previous knowledge, no need to Introduce noisy data, increase
train from scratch. generalization
Low computing power

Need massive pre-training data for Need to find suitable related tasks.
Cons generalization Computing power needed
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Statistics: Text

TEXT PERFORMANCE

& F1 score & F1 score(google)
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Statistics: Protein
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Statistics: Source code

50

SOURCE CODE
PERFORMANCE

ETLESTL

42.2
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Conclusion

Image
source:https://cn.dreamstime.com/%E5%85%8D %E7%89%88%E7%A8%8E%E5%BA%93%E5%AD%98%E5%9B%BE %E7%89%87-3d%E5%B0%8F %E6%84%9F %E5%8F %B9%E5%8F %B7%E7%9 © sebis 23
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Outlook TUTI

@

Transfer Learning L Multi-task learning

171103 Matthes English Master Slide Deck (wide) © sebis 25



Thanks for your aftention!



Appendix1--TEXT

accuracy

Domain Adaption on
Reading Comprehension

87.06

Question Answering

Sentence Selection Sk

Thermal dynamic

: 1.396%
modeling

Negation Detection 94.53

Negation Detection 86.04

Natural language

understanding 93.1

Language Translation 8.2



Appendix2--PROTEIN TUT

Protein structure prediction 70.3

Protein structure prediction PLOT

Protein structure prediction
Protein Evolutionary 73
Understanding

Protein ontology prediction
Remote homology and fold 54 89
prediction

Protein function prediction 38.9 62.6 48
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Appendix3--SOURCE CODE Tum

Syntax detection 0.52

Code semantic

embedding S

Code clone

detection 2

APl knowledge
summarization

Code
summarization

42.2 35.41 37.91

Semantic Labeling 0.769
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